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Abstract. Integrating Artificial Intelligence (AI) technologies promises
to open new possibilities for the development of smart systems and the
creation of positive user experiences. While the acronym «AlI»has often
been used inflationary in recent marketese advertisements, the goal of
the paper is to explore the relationship of AI and UX in concrete detail
by referring to three case studies from our lab. The first case study is
taken from a project targeted at the development of a clinical decision
support system, while the second study focuses on the development of
an autonomous mobility-on-demand system. The final project explores
an innovative, Al-injected prototyping tool. We discuss challenges and
the application of available guidelines when designing Al-based systems
and provide insights into our learnings from the presented case studies.
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1 Introduction

Trying to escape from the seemingly omnipresent acronym «AlI»is almost impos-
sible these days. Whether we look at bold promises of machine learning-based
systems that pretend to match all our business needs, over Al-powered predic-
tive maintenance tools that optimize servicing, to smart recruitment applica-
tions that claim to find the best candidates out of gazillions of applicants, to
self-driving cars pledging to enhance safety and convenience, or Al-driven filters
that allow intelligent replacements of skies to create truly dramatic (fake) photos
— ATl has become an irreplaceable buzzword to describe the impressive achieve-
ments stemming from recent advances in the development of smart machines.
This marketese speech is, without doubt, not unfounded: in the past few years
we have witnessed various impactful demonstrations of Al-injected systems [1]
that nurtured brave expectations about future capabilities of intelligent tools.
AT is currently undergoing another hype phase—and is experiencing at least its
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third hype wave since the foundation of Artificial Intelligence as a scientific dis-
cipline at the famous Dartmouth conference in 1956. Hypes naturally come with
valleys of disillusion and the course of Al is no exception.

The term AT winter was coined to describe a phase in which research funding
and industry investment in AI declines, mostly due to disappointments in the
light of excessive promises. The history of Al has counted two of such winters:
the Lighthill report [2] heralded the first period of drought in the 1970s by point-
ing out the limitations of the then current technology to meet the grand plans
of early AT approaches. Initial successes of so-called Expert systems in the 1980s
helped to raise interest (and funding) in AI in a second wave, but the brittle-
ness of resulting systems—aside from their often very narrow domains—led to
another decline and, subsequently, to a second Al winter. It is fair to denominate
the vast majority of systems developed in these earlier periods of Al history as
being research demonstrators that illustrated the state of the art at that time.
Applications flourishing in the current AI summer, however, clearly left the pro-
tective walls of research labs, but have long found their ways into commercial
products. Speech-based systems, including Alexa and Siri, have conquered our
living rooms and kitchens while machine learning approaches are now compre-
hensively used to analyze big data bodies in cloud-based computing to derive
patterns and support decision making. Al is now described as a key technology of
the millennium [3]. The unbridled blossoming of Al in its present third summer
is facilitated by national-level research funding and gigantic industry budgets.

The broad commercial success of recent Al-injected systems comes, as a con-
sequence, with a wide diversification in their user base. New functionalities of Al
systems lead to questions of how these can be used to address relevant user needs.
Taming the complexity of AI applications requires appropriate interfaces for
Human-AT interaction. Evaluating these systems asks for innovative approaches
to understand how we can identify barriers and improve a user’s experience with
AT systems using formative evaluation methods. The aforementioned consider-
ations are of course just selected, non-exhaustive examples, but they point to
a pool of critical questions for the future success of Al-based systems. In this
paper, we argue that User Experience (UX) Design - as a human-centered dis-
cipline that is able to balance (potentially conflicting) requirements from users,
technologies and businesses - provides a structured framework of methods to
support the development of Al-based systems. To explore the relationship of
AT and UX, we present three case studies from our lab and discuss respective
learnings from these projects. Other authors have already ascertained that the
“field—where UX meets AI—is full of tensions” [4], and we can only agree. While
it is generally approved that a positive user experience is a core ingredient for
the acceptance of a product or service (e.g. [5]), a discussion of the role of UX
methods for the development of Al-injected systems has only recently seen sev-
eral calls to action and participation from both researchers and major journals,
e.g. [4,6,7].
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2 UX and Al

A tremendous number of attempts aiming to arrive at a universal definition of the
term «Artificial Intelligence» can be found in the literature—with not too much
consensus in their core conclusions. We certainly do not intend to add another
facet to these attempts, but will use Nilsson’s description (1998) as a working
definition for the remainder of this paper: “Artificial Intelligence (AI), broadly
(and somewhat circularly) defined, is concerned with intelligence behavior in
artifacts. Intelligence behavior, in turn, involves perception, reasoning, learning
communicating, and acting in complex environments. Al has one of its long-term
goals in the development of machines that can do these things as well as humans
can, or possibly even better” [1,8].

Today’s Al systems—with the possible exception of very sophisticated
robots—mostly do not comprehensively match all aspects of Nilsson’s intel-
ligence behavior, but typically focus on a selection of these. With regard to
commercial systems, some that use the attribute «Al» in advertisement may
even just refer to single “Al-powered tools”, like Luminar’s “Al Sky replacement”
or “Al skin enhancer” in photo processing. Note that Nilsson’s definition also
does not require any similarity to (postulated) underlying human structures or
processes when generating intelligent behavior, but is taking an engineering per-
spective. With regard to the case studies reported in this article, the same stance
is taken—with the exception of the ANTETYPE project (see section Sect.5.3)
where the goal is explicitly targeted towards a simulation of human behavior
based on a theory about the human Cognitive Architecture [9]. It is worth to
emphasize that Nilsson’s definition clearly surpasses a purely Machine Learning
(ML) approach, which is sometimes illegitimately equated with AI (see [10]).

Although several different definitions of «User Experience» are used in the
literature, they mostly converge in their core meaning. For the purpose of the
paper, we render the widely used definition put forward in [7,11] adequate: User
experience (UX) can be described as a “person’s perceptions and responses result-
ing from the use and/or anticipated use of a product, system or service [... It]
includes all the users’ emotions, beliefs, preferences, perceptions, physical and
psychological responses, behaviors and accomplishments that occur before, dur-
ing and after use”. This definition importantly emphasizes a temporal aspect of
the concept of user experience: the expectations and anticipations of a prospec-
tive user contributes to the total of a user’s experience with a system, just as her
experience during the actual usage situation and her retrospective considerations
after use do.

3 Challenges in Human-ATI Interaction

Intelligent, Al-injected systems perform more and more tasks previously carried
out by humans. This achievement fulfills the last part of the above cited defini-
tion of AI by Nilsson: “machines that can do these things as well as humans can,
or possibly even better” [1,8]. If we consider this part from a broader, human
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factors-oriented perspective, we can describe this process as automation [12,13].
Following the steps of human information processing, Parasuraman, Sheridan
and Wickens [13] describe four corresponding functions that can be automated:
information acquisition (sensory data gathering), information analysis (process-
ing of acquired information), decision selection (choosing an option) and action
implementation (execution of selected decision). To differentiate automation lev-
els, i.e. the degree to which tasks are performed by a machine, Flemisch et al. [14]
propose an automation spectrum with five levels (manual - assisted - semi auto-
mated - highly automated - autonomous/fully automated). While advantages
and benefits such as increases in effectiveness and efficiency are obviously preva-
lent throughout all of these levels, automation in general comes with a batch
of well-known human factor challenges. Bibby et al. [15] argues that automated
systems will always remain human-machine systems, no matter how advanced
the technology gets. Bainbridge [16] concludes an “irony of automation” in the
sense, that the role of a human operator becomes even more crucial the more
advanced a system becomes. In today’s cars, for example, systems like Adaptive
Cruise Control and Lane Keeping Assistance are able to take over (parts of)
the driving task. However, if a system limit is reached or an error occurs, the
driver, i.e. the human operator, needs to understand what happened (or what is
about to happen) in order to be able to take over control in potentially critical
situations.

The driving situation outlined above evokes automation problems that can
be allocated to three main reasons [17]: 1) Inappropriate trust, 2) Loss of manual
skills and 3) Insufficient situation awareness. For the scope of this paper, we focus
on these reasons, but want to point out that - depending on context and scope
of an application - there might be other, more specific challenges prevailing, e.g.
in terms of reliability, performance, expectancy, ethics, security (perception) or
data privacy (see e.g. [18]).

3.1 Trust

Trust can be described as “a belief that something is expected to be reliable,
good and effective” and as the mental state people have based on their expec-
tations and perceptions [19]. With regard to the definition of User Experience
in Sect. 2 of this paper, inappropriate trust can thus be either (a) the outcome
of (positive or negative) expectations that precede actual driving and/or (b) are
established as a result of an earlier or the current driving experience. The level
of trust towards a system depends on its reliability, its perceived usefulness and
transparency [20], i.e. the degree of its comprehensibility. For the use of intel-
ligent systems it is essential, that the level of trust people have is appropriate.
Neither “overtrust” nor “distrust” is desired [21] as it might eventually result in
“misuse” or “disuse” [12,13]. With increasing system experience people calibrate
their level of trust [22], i.e. they adjust their trust level to match system capabil-
ities, which eventually leads to appropriate use [21]. Besides perceived usefulness
and perceived ease of use [23], trust has a major influence on the (public and
personal) acceptance of systems (e.g. [24]).
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3.2 Loss of Skills

We can observe a change of humans’ role from active operating tasks to passive
monitoring tasks in automated and Al-injected systems [25]. As a result, oper-
ators loose experience, training time and associated motor and cognitive skills
[17]. Since automation often takes over the ‘standard case’, but might eventually
fail in critical situations, Bainbridge’s [16] irony becomes even more paradox.

3.3 Insufficient Situation Awareness

Situation awareness describes “a person’s state of knowledge about a dynamic
environment” [26, p. 60]. It includes the perception and comprehension of ele-
ments that are part of this environment, as well as the respective projection of
future states based on this understanding [26]. In dynamic systems control, sit-
uation awareness is a prerequisite for making adequate decisions. If situational
awareness is insufficient, it is more likely that humans make wrong decision.
Human factors literature describes this adverse state also as «out-of-the-loop
unfamiliarity», illustrating a situation in which the operator/user takes unnec-
essary much time to get back into the control ‘loop’ [27].

4 Design Guidelines

Besides general design processes and guidelines, e.g. [11,28,29], there are sev-
eral attempts to provide specific guidance for designing Human-AV interactions.
Recent collections, e.g. [1,30], focus on adapting approved general guidelines
featuring a human-centred perspective. For instance, the People+AI Guidebook
by Google [30] emphasizes an explicit focus on solving an actual problem where
the strengths of Al can be used to support user needs. It is mandatory to find
the right balance between augmenting and automating tasks - instead of simply
adding AI functions on top of existing products just because of their technolog-
ical feasibility or for marketese advertisements. Furthermore,’reward functions’
of AI systems determining how AI defines successes and failures need to be
designed and evaluated considering various perspectives and - if possible - be
communicated to users [30]. In the same spirit, Amershi et al. (Microsoft) [1]
put forward to “Make [the user| clear what the system can do” and how well it
can do that. Building on the work of Horvitz [31], they propose 18 AI usability
guidelines (see Table1 for an excerpt), each complemented with a description
and detailed examples. The set is split up in 4 categories: initially (G1-G2),
during interaction (G3-G6), when wrong (G7-G11) and over time (G12-G18).
While Amershi et al. [1] introduce the set as generally applicable, they also note
an inherent trade-off in terms of its validity for specific applications.
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Table 1. AI design guidelines by Amershi et al. (Microsoft) [1].

AT Design Guidelines
G1 | Make clear what the system can do

G2 | Make clear how well the system can do what it can do

G3 | Time services based on context

G4 | Show contextually relevant information
G5 | Match relevant social norms

G6 | Mitigate social biases.

G7 | Support efficient invocation

G8 | Support efficient dismissal

G9 | Support efficient correction

G10 | Scope services when in doubt

G11 | Make clear why the system did what it did

G12 | Remember recent interactions

G13 | Learn from user behavior

G14 | Update and adapt cautiously

G15 | Encourage granular feedback

G16 | Convey the consequences of user actions
G17 | Provide global controls

G18 | Notify users about changes

5 Case Studies

In this section, we present three case studies that exemplify the design of Al-
injected systems in different domains, discuss respective underlying interaction
types and carve out some of the learnings we gathered. During the description
of the projects, we also refer to the guidelines summarized in Table 1 to point to
their usefulness. Using the model by Parasuraman, Sheridan and Wickens [13],
Fig. 1 provides an overview of the studies by classifying their automation level
along a continuum from low (fully manual performance) to high (full automation)
in four functions: information acquisition, information analysis, decision selec-
tion and action implementation. The first case study, IMEDALytics (Sect.5.1),
is taken from a project targeted at the development of a decision-support system
(DSS) for individualized medical risk assessment, monitoring, and therapy man-
agement in intensive care medicine. The second project, APEROL (Sect.5.2),
focuses on the development of autonomous mobility-on-demand public buses
and the required services for their operation. The final case study, Predictive
prototyping (Sect.5.3), introduces ANTETYPE, a state-of-the-art user inter-
face prototyping tool that we combined with the ACT-R Cognitive Architecture
(see [9]) to support the prediction of human behavior based on synthetic cogni-
tive models. We selected these examples from the pool of our current research
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projects to not only present cases from different domains, but also to consider
different types of Human-Al interaction. While the interaction type «guardian
angel» (see [32]) — resembling an automatic machine with a ‘protective’ character
— prevails in the APEROL case, interaction in IMEDALytics can be adequately
characterized as type of «colleaguey. Similar to that, users of the ANTETYPE
prototyping tool interact with the respective Al-enhanced prediction module in
a «best friend» style, where the tool acts as a partner who assists with delivering
requested results.

- " Function
utomation Information Information Decision Action
Level o f . .
Acquisition Analysis Selection Implementation
High
A
I :‘:\ i
Il
Low
Case Study O 1: IMEDALytics v 2: APEROL ® 3: ANTETYPE

Fig. 1. Description of our case studies using an adaptation of the model by Parasura-
man, Sheridan, and Wickens [13].

5.1 IMEDALytics: Clinical DSS for Intensive Care

Personalized medicine is a research field that unites many disciplines. The mutual
aim of personal medicine is to treat patients based on their individual param-
eters, including their physiological constitution, gender-specific characteristics,
or the results of an analysis of their genetic codes. Even highly skilled profes-
sionals are unable to recognize the complex statistical interrelations between all
these parameters. Algorithmic analyses, however, can successfully rise to that
challenge and detect meaningful patterns in complex data sets. It is paramount
to present the ramified information—and possible identified patterns—to physi-
cians in an unambiguous and understandable way, classifying the task as a prob-
lem of Explainable AI (XAI, see [33]). On the one hand, the healthcare staff’s
requirement to act rapidly under time pressure needs to be met. Simultaneously,
the system needs to offer enough informational depth to persuade physicians and
nurses to even consider the information in the first place.
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In IMEDALjytics, an ongoing applied research project, we are designing an
Al-based system to support high-consequence clinical decision-making in inten-
sive care units (ICU). This type of system belongs to the category of clinical deci-
sion support systems (CDSS). With the adoption of electronic patient records
and significant advances in Al technology, CDSSs have the potential - from a
technical perspective - to provide complementary insights into medical predic-
tion, diagnosis and/or treatment choice [34-40]. Although CDSS can potentially
enhance the quality of care, it is noteworthy that many CDSS—despite consid-
erable progress in Al technology—still fail to be adopted into clinical practice
[41,42]. An insufficient understanding of user needs due to lacking user research,
as well as deficient considerations of HCI guidelines in system design are claimed
to be main causes for the failure of adoption [43-47]. Results of Khairat et al. [45]
indicate, based on a critical review of CDSS papers focusing on user acceptance,
that poor workflow integration, questionable validity of systems, excessive inter-
ference by the systems and efficiency issues are often related to lower user accep-
tance.

Within a qualitative field study, Yang et al. [42] investigated a particular use
case of a prognostic CDSS: the medical decision-making process for a ventricular
assist device to partially replace heart functions. The authors likewise identified
a lack of trust in the capabilities of an Al-injected CDSS to assist in difficult
cases. Beyond this finding, they failed to observe the need for such support
as the observed clinicians felt that they “knew how to effectively factor patient
conditions into clinical decisions” [42]. In sum, Yang et al. argued for the necessity
to carefully consider the social context. There is an urgent need for designers to
gain a deeper understanding of CDSSs, their (future) users and their particular
contexts of use to maximize opportunities for CDSSs.

While research within the fields of Medicine, Medical Informatics, and Al has
until today mainly focused on supporting decisions for arriving at the correct
diagnosis or the prediction of a deterioration of a patient’s state [36—40], our
case study focuses on supporting continuous decisions for optimal therapy, more
precisely volume therapy. Volume therapy is defined as infusion therapy that
serves to compensate for a volume deficit inside blood vessels. The particular
challenge for treating ICU physicians is to determine the optimal, individual-
ized indication for each patient based on medical guidelines and to administer
the correct dose and the most suitable infusion solution. Incorrect therapy can
result in undesired long-term consequences such as the need for long-term care
or long-term ventilation. In IMEDALytics we focus on assisting physicians in
individualized medical risk assessment, monitoring, and therapy management
for volume therapy.

We argue, that in order to holistically support decision-making processes
in intensive medicine, a change of perspective from classical problem solving
through technology to the design of experience potentials is essential. Questions
with which we were faced during project work ranged from general questions
regarding the creation of positive Human-Al-Interaction to specific questions on
data visualization techniques:
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1. How can we combine the human abilities of healthcare professionals - such as
their general understanding, their previous experiences, their flexibility and
creativity in the decision-making process - with the powerful possibilities of
an Al-based system?

2. How can we make the diagnosis and therapy suggestions provided by the
system accessible to healthcare professionals without depriving their self-
efficacy?

3. Which design processes are needed to design an interactive interface that
leads to a long-term positive UX?

4. Which influence has (the type of) presented information - e.g. in the form of
information visualizations - on the perceived transparency or even trust in a

CDSS?

Understanding UX in Volume Therapy. To gradually address these ques-
tions and to derive solutions from the aforementioned perspective “experiences
before functionality (technologies)”, we chose an experience design approach as
proposed by Hassenzahl [48]. This approach focuses on the user and concentrates
first on his or her experience. Experiences are analyzed by using psychological
needs to identify why an experience is considered positive.

In the very beginning of our project, our goal was to gain a detailed under-
standing of how physicians and nurses work together to make decisions around
volume therapy and how CDSSs can be integrated into their daily clinical work.
In particular, we wanted to understand decision-making within the specific orga-
nizational framework of an ICU and within a heterogeneous team. To gain
insights into these experiences, we conducted contextual inquiries (observations
and semi-structured interviews) [49] in three German ICUs [50]. We transferred
and visualized our findings on workflows, situations, actions, emotions, context,
and interactions that a (future) user may experience during a typical day along a
time axis into a user experience map [51], thereby blending well-established UX
methods and service design techniques. We modified conventional user expe-
rience maps to emphasize collaboration by including two users instead of one
against the background of the ICU context. The goal of working with a user
experience map was to aid discovery of experience opportunities that a CDSS
for volume therapy might bring. Our findings show that adapting a system’s
interface to both, context and users, facilitates collaboration and embraces inter-
actions with a CDSS to combine human and machine intelligence [50].

Subsequent to this ethnographic approach, we chose to complement our
insights with additional interviews to validate gathered findings and to dis-
cuss initial design concepts derived from these findings with nurses and physi-
cians. Therefore, we are applying a method inspired by Séguin et al.’s proposed
Triptech approach [52] featuring storyboards to collect prospective users’ reac-
tions (likes/dislikes/potential use cases/questions/concerns) to early design con-
cepts. In contrast to the Triptech approach that is used in focus groups, we are
using the storyboards in individual interviews (Fig.2). In a first step, intervie-
wees assess the extent to which psychological needs (see [53], e.g., autonomy,
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competence, security) in volume therapy are currently met. This enables us to
place an increased focus on the psychological needs according to Hassenzahl et
al. [53] within the volume therapy and use psychological need statements as an
impulse for the presentation of first concept drafts (second step). To gather user
feedback, we present three to five design concepts in this second step that address
the psychological needs that the interviewee prioritized in the initial step. The
design concepts consist of storyboards (see Fig.2) and help us to discuss design
concepts with a focus on interviewees’ experiences. Using storyboards, we enable
prospective users to better imagine situations where CDSS support is desirable.
Particularly, we intent to gather information on how to provide proper granular
feedback (G15) and on how to clearly communicate users why the system did
what it did (G11).

/‘\

£
-

Fig. 2. Example storyboard for collecting first reactions to early design concepts for
volume therapy CDSS.

D

As Al in the IMEDALytics case takes over the role of a ‘colleague’ (see [32])
supporting nurses and physicians particularly in their decision selection, consid-
ering this aspect is crucial to set the appropriate tone in the communication with
users. L.e. system design has to carefully take the needs and user requirements
into account to satisfy the mentioned guidelines by [1]. This in turn provides
the preconditions to arrive at an appropriate level of trust and to facilitate sys-
tem acceptance. In contrast to the ‘colleague’ metaphor, the Al-based system in
APEROL, our second case study, can be described as an automatic ‘guardian
angle’.

5.2 APEROL: Autonomous Mobility-on-Demand

In autonomous mobility-on-demand systems, passengers are transported by
robotic, self-driving cars [54], i.e. by vehicles with high or full driving automa-



156 D. P. Wallach et al.

tion (SAE levels 4 or 5 [55]). Due to the rapid progresses in vehicle automa-
tion, such Al-driven autonomous vehicles (AVs) will soon be introduced to the
public. As a result, the use of public, demand-oriented transport systems and
autonomous ride sharing will become reality in our daily commuting. Since
AMoD services will be always available and neither rely on scheduled timeta-
bles nor on fixed stops, they will provide spatial and temporal flexibility to
passengers while increasing efficiency and sustainability of transport systems
[54,56]. Consequently, fewer vehicles will then be on our roads in terms of both
riding and parking. AMoD offers great potential to solve major challenges of
today’s public transport systems, e.g. regarding congestion prevention, accessi-
bility and first/last mile problems [54,56-58]. Traffic simulations on the integra-
tion of AMoD systems in major metropolises - e.g. New York City and Singapore
[54] - support this promising conclusion and provide evidence for their effective-
ness and efficiency. In addition, gained free time (due to not being engaged with
the driving task) might increase our productivity or can be used for communi-
cation and relaxation [59], resulting in overall societal benefits.

Despite achieving technical maturity, AVs face major challenges with regard
to public adoption. Adoption barriers include (inappropriate) user expectations,
concerns about the technology’s reliability, performance and security, as well as
privacy considerations—and most important of all: trust issues [18]. To coun-
teract these challenges, a precise understanding of people, systems, and their
respective environment is essential [19]. A clear comprehension of a user’s expe-
rience journey using an AMoD system enables the thorough design of corre-
sponding touch points (i.e. HMIs) and Human-AV (i.e. Human-Al) interactions.
Touch point design is a vital part of our publicly funded project APEROL
(Autonomous, Personal Organization of Road Traffic and Digital Logistics; [60]).
After having gathered a thorough understanding of the context of use through
extensive user research in this project, we now focus on two main questions:

1. How can we create an enjoyable UX for (future) passengers when interacting
with AVs before, during and after use?

2. How can we efficiently evaluate design concepts for the required interfaces at
the respective touch points - especially in very early phases of the develop-
ment?

In the next sections we provide insights on how we are tackling the aforemen-
tioned questions within the project APEROL.

Understanding UX in AMoD. In contrast to lower levels of driving automa-
tion, all occupants of AVs (SAE levels 4 and 5 [55]) are passengers that do
not need to take care of the vehicle’s driving at all. This situation can roughly
be compared to taking a taxi. A main difference is, however, that no (human)
driver, who controls the vehicle or can communicate with passengers, is present
in AVs. Thus, there is no driver asking passengers where they want to go or
notifying them when there is a traffic jam ahead. Instead, Al has to take over
both responsibilities. The Al-powered system conducts primary driving tasks,
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i.e. navigating, steering and stabilization (see [61] for further elaboration), as
well as secondary driving tasks (e.g. light control). To do this, environmental
data from multiple sensor inputs (e.g. from stereo cameras, lidar and radar) is
collected and analyzed in real-time, applying Al-based and stochastic algorithms
for object detection and tracking. The algorithms use - for instance - artificial
neural networks to recognize roads, other vehicles and infrastructure (e.g. [62]) or
to predict the path of pedestrians and cyclists (e.g. [63]). Combining the sensor
information with HD maps and GNSS data enables the AV to plan its move-
ments through complex traffic environments. Even for sophisticated researchers
such AT systems typically remain - at least to some extent - “black boxes” [64].
Ordinary passengers, not having knowledge about their capabilities, can experi-
ence a loss of control and a corresponding feeling of insecurity, making it difficult
to establish an appropriate level of trust. However, trust is considered to be an
essential prerequisite for technology acceptance (e.g. [24]). By providing passen-
gers with appropriate information and feedback about the AV’s current state,
its activities and its intentions we intend to support trust calibration and aim
to compensate the absence of a human driver.

To foster a comprehensive understanding of future AMoD users, their needs
and requirements, prospective users need to be continuously integrated into the
development process [65] from early phases on. Within the APEROL project, we
co-conducted a citizens’ dialogue on autonomous driving with a representative
sample of 76 prospective users of an AMoD service [66]. The findings of this
dialogue supported the challenges of Human-Al interaction mentioned above
and served as a foundation for design considerations and decisions.

Designing Human-AV Interactions. Strengthened by insights from our user
research activities we consider well-designed and trustworthy systems with an
enjoyable UX as crucial to counteract the hurdles of AMoD adoption. Such sys-
tems inform and enable passengers (1) to understand the signals, intentions and
actions of (Al-controlled) AVs, (2) communicate their own intents and needs,
and (3) to foster an adequate level of trust towards the technology. Based on our
research results and its synthesis with AT design guidelines (Sect. 4) we developed
two conceptual design proposals for Human-AV interaction: an in-vehicle pas-
senger information display and a smartphone travel app. The interface proposals
are still in early concept phases and are currently evaluated in a study involv-
ing a representative user sample. By presenting these initial interface drafts we,
nevertheless, hope to contribute to a discussion on the creation of efficient and
enjoyable UX for future AMoD systems.

Smartphone App. Since there are no driving-related controls (e.g. steering wheel,
gas pedal) available in AVs, the main user interface in AMoD systems will prob-
ably be a (smartphone) app. Particularly following AI Design Guidelines G1,
G3, G4, G17 and G18 (Tablel), our app concept focuses on providing users
with adequate information to arrive at a profound level of situation awareness,
as well as on offering control functionalities while taking a ride in a (shared) AV.
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Fig. 3. Conceptual design screens for a AMoD smartphone app. Created as part of the
APEROL project.

Figure 3 shows three different states of the app concept’s main screen during a
ride. The app displays the AV’s location, its planned route and traffic informa-
tion in the map (Fig. 3: A) and provides - similar to hardware buttons in public
busses - a “STOP” functionality (Fig.3: B) to support efficient correction (G9;
Table 1). In addition, an emergency button (see also [67]) provides direct access
to customer support and emergency functionalities (Fig. 3: C).

In-Vehicle Passenger Information Display. Passenger information systems
promise to increase user acceptance and customer comfort of public transport
systems [68]. Similar to the smartphone app, our in-vehicle HMI concept for a
shared AV encompasses a map displaying current location, route, planned stops
as well as traffic conditions (Fig.4: A, B, D). Furthermore, personal ticket IDs
(Fig.4: C) are displayed in a ’stop list’ to anonymously communicate drop-off
stops to respective passengers. When booking a ride, passengers receive the ticket
ID which then functions as an (anonymous) allocator for individual passenger
information. The in-vehicle HMI enables the passengers to get all required infor-
mation without having to constantly monitor their smartphone, while at the
same time protecting their privacy requirements.

Evaluating Human-AV Interactions. Since “autonomous ridesharing is still
a theoretical subject [...,] users still lack the hands-on experience” [69] and field
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Fig. 4. Conceptual design of an in-vehicle passenger information display for AMoD.
Created as part of the APEROL project.

studies with AVs are only practicable within tight boundaries impairing the
results, adequate methods and tools are needed for exploration, prototyping and
evaluation (see also [7]). Such methods are, however, necessary to enable contin-
uous and iterative evaluations of interface and service concepts. For expert-based
evaluation, guidelines (e.g. [1] are good starting points. Generally, the interaction
with AVs and AMoD systems is highly context-sensitive, making the actual usage
situation an essential aspect of evaluation setups. Context-based prototyping and
empirical simulation studies are needed to conduct proper user experience eval-
uations. To meet these requirements, we constructed a simple video-based AV
simulator with a CAVE-like environment. Placed in a standard office room, our
AV simulator enables stakeholders and users to experience a simulated (shared)
ride in an AV (see [70] for further elaboration). Initial user studies incorporating
the setup [70] show promising results regarding both presence perception and its
suitability for valid and context-sensitive usability testing.

5.3 Al-Based Predictive Prototyping

In the IMEDALytics case study we presented an Al-based clinical decision sup-
port system that will assists physicians in individualized medical risk assessment,
monitoring, and therapy management in the—clearly circumscribed—domain of
volume therapy. The assumed interaction type with the system can be char-
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acterized as physicians dealing with a competent, non-human «colleague» (see
[32]). Passengers of the AMoD system in the APEROL case are likely to experi-
ence the autonomous bus as a «guardian angel» that safely transports them to
the location they wish to reach. In the case study discussed in this section we
exemplify the interaction type «best friend»: A designer uses a prototyping tool
to create interactive interface prototypes and asks an Al-injected module of the
tool—her helpful «best friend»—to deliver quantitative performance predictions
for given scenarios.

We have proposed such a predictive prototyping approach [71] and demon-
strated how the interaction performance (e.g. in terms of efficiency) of user
interface proposals can successfully be predicted by the integration of generated
Al-models based on the ACT-R cognitive architecture [9]. A cognitive architec-
ture embodies a comprehensive, computer-simulated scientific hypothesis about
the structures and mechanisms of the human cognitive system that are regarded
“as relatively constant over time and relatively independent of task” [72, 312].
The ACT-R framework allows the creation of models that can then be run to
predict and explain human behavior. ACT-R models can interact with an envi-
ronment and learn (on a symbolic and sub-symbolic, neurally-inspired level) to
adapt the behavior to the statistical structure of an environment. We have inte-
grated ACT-R as a module in ANTETYPE, a commercial design tool to create
sophisticated, responsive Ul prototypes for desktop, mobile and web-based appli-
cations [73]. ANTETYPE was designed to support a seamless transition from
the development of early wireframes defining the layout of an interface, over
the creation of visual design alternatives to the creation of complex, responsive,
interactive prototypes without switching between different software tools.

An ACT-R model is derived automatically using ANTETYPE’s monitoring
mode from observing a designer demonstrating the interactions to complete a
relevant key scenario with an interface prototype. If interactions depend on the
setting of specific values shown in the interface, (simulated) user actions can
alternatively be described using a graphical inspector interface in ANTETYPE’s
instruction mode. To run simulated users on a prototype, a designer simply (1)
demonstrates the necessary steps to complete a task scenario, and (if necessary)
(2) instructs the model using ANTETYPE’s instruction mode. After a designer
has finished task demonstration, an ACT-R model is automatically generated
by mechanisms described in detail in [71]. The model is then run on the scenario
to create a distribution of performance times for a number of trials using the
respective interface prototype. In this setting, the designer interacts with the
prediction module by asking a «best friend» for performance predictions: the Al-
based friend then delivers the results just like a friend would do after running
a study. In our case, however, the participants are generated, synthetic users
and the study is run automatically for an arbitrary number of trials. Figure 5
shows an example of using predictive prototyping to comparatively predict the
performances of using three different interfaces for a given scenario (listening to
a playlist on mobile music players, e.g. Spotify, QQMusic and a revised version
of Spotify).
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Fig. 5. Performance predictions for three different music player interfaces. Created as
part of the ANTETYPE project.

The outlined predictive prototyping method illustrates how quantitative per-
formance predictions (like time-on task, initial learning to skilled behavior) can
support designers by providing quick and valid analyses of the performance con-
sequences of design variants. Alternative design proposals can be compared with
regard to defined quantitative performance metrics without the need to con-
duct effortful empirical usability evaluations. Predictive prototyping thus allows
iteration cycles to be accelerated. It is, of course, not our goal to replace empir-
ical usability tests. They remain an irreplaceable method to identify conceptual
usability barriers or receive qualitative information about a user’s experience
with a system. In fact, predictive prototyping is in some sense complementary
to empirical studies since it provides a promising approach to gather quantita-
tive performance data that is beyond the (practical) scope of usability tests in
a lab. We argue, that quantitative performance predictions cannot reliably be
derived from empirical usability tests because (1) participants are typically not
repeatedly exposed to a given test task: skilled performance—and learning—
are, however, a function of the number of practice trials; (2) thinking-aloud, as
a standard requirement for participants during usability test, interferes with the
primary process of working on a task (see [74]); (3) most instructions in usability
tests do not even require participants “to work as fast as possible” and (4) par-
ticipants are aware of being recorded during usability tests and might thus focus
on avoiding errors instead of working as efficient as possible on a (new) given
task. By providing a solution to these objections, Al-based predictive model-
ing opens up new possibilities for interface designers. Initial applications of the
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method in real-world projects and encouraging goodness-of-fit comparisons of
predicted and empirically observed user data provided evidence for the validity
of the approach (see [71]).

The first and second case study reported in this paper emphasize how the
methodological apparatus of human-centered design approaches can contribute
to the development of better Al-based systems, increasing the likelihood of their
adoption. The case study in this section shows how prototyping of user interfaces
can directly benefit from the integration of an Al-based module that significantly
enhances the scope of a prototyping tool. With regard to the guidelines by [1] (see
Sect. 4), we want to especially highlight G2 (Make clear why the system did what
it did) and G13 (Learn from user behavior). Learning from users (i.e. a designer
demonstrating an interaction path) forms the basis of predictive prototyping. To
support an understanding of why the model performs in the observed way, the
module offers helpful visualization and tracing option to explain its behavior.

6 Conclusion

In order to explore the relationship of humans and AI, we presented three case
studies for Human-Al interaction from our lab . These studies can, of course,
only cover a small portion of the wide and ‘tension-full’ field where AI meets
UX. The discussed challenges, guidelines, ideas and learnings might, however,
be useful for further reference and exploration in other domains.

We illustrated the necessity to design understandable and trustworthy sys-
tems and the need to carefully consider contextual factors. CDSS, for example,
still lack adoption in clinical practice, although their performance and capabil-
ities have intensively improved over the last years due to the progress in Al
technology [41,42]. We claim that a core reason for this can be traced back to
a lack of acceptance that is due to negligence of considering user requirements
and context during the design process. As Lacher et al. [19] point out, it is cru-
cial to understand people, systems and context in order to counteract respective
challenges—and this might be of particular importance when designing dynamic,
machine learning-based systems.

We appreciate the rich value of Al capabilities for UX and contemplate Al as
an enabler of new (product) experiences, while at the same tine emphasising the
eminent role of UX methods and frameworks for envisioning and creating posi-
tive interactions between humans and Al. Established UX methods and service
design techniques need to be applied and, where necessary, adapted to tackle
the challenges of Al-based automation. We thus consider the relationship of UX
and Al as mutually beneficial.
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